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Abstract-We have conducted numerical experiments with the distinct element method to study factors that 
control the development of deformation bands in sandstone. These experiments show how sorting and initial 
porosity of the host rock control the development and the mode of deformation in the area of strain localization. 
The results of the numerical experiments are in qualitative agreement with field and microstructural observations 
of deformation bands at Arches National Park (Utah). 

In our numerical experiments sand grains are modeled as cylindrical elements that move in response to 
externally applied boundary conditions. Systems of elements that have a large variability in radius and/or loose 
packing deform at lower applied stresses than systems of elements that have a uniform radius and/or tight 
packing. The mode of deformation in the first kind of aggregate is particulate flow, where elements of different 
sizes move easily with respect to each other due to a low degree of interlocking. The mode of deformation in the 
second kind of aggregates is localized failure on small deformation bands. Shear bands in our numerical 
experiments nucleate as a zone of dilatancy and propagate via organization of dilatant zones into discrete faults. 
The presence of a flaw in the form of a ‘weak’ grain promotes the nucleation and propagation of shear bands. 

INTRODUCTION 

Faults in sandstone have distinctive characteristics 
regarding their evolution and microstructure (Aydin 
1978, Aydin & Johnson 1983, Antonellini et al. 1994). 
The simplest fault in sandstone is a single small ‘fracture- 
like’ structure called a deformation band. Deformation 
bands are l-2 mm thick and accommodate small offsets 
(1 mm-100 mm). Many deformation bands (up to 300- 
500) form in zones of deformation bands; these zones 
accommodate offsets of 100 mm up to 10 m. ,Offset in 
excess of a few meters is usually associated with the 
development of a discrete slip plane, a smooth surface 
where extensive comminution and recrystallization of 
mineral grains takes place. The slip plane represents a 
displacement discontinuity in the sandstone body and it 
usually has well-developed slickensides. In contrast, 
deformation bands lack a well-defined surface of dis- 
placement discontinuity and have characteristics similar 
to a distributed zone of shearing. 

The microstructure of a deformation band, as de- 
scribed by Antonellini et al. (1994), is characterized by 
volume changes and/or grain crushing. Positive dila- 
tancy with little or no grain crushing is usually observed 
in deformation bands that form in low-porosity (<12%) 
host rocks at low mean compressional normal stress. 
Compaction and grain crushing are better developed in 
deformation bands that form in sandstones with high- 
porosity (>12%) and high mean compressional normal 
stress; these deformation bands exhibit well-developed 
cataclasis (Antonellini er al. 1994). 

Field observations and microstructural analysis of thin 
sections from deformation bands in different sandstone 
types have shown that factors besides porosity and stress 
state can influence the development of microstructures 

(Antonellini et al. 1994). Sorting of the sand grains, clay 
content, and mineralogy all play a role in the develop- 
ment of microstructures and in the mechanical behavior 
of the band. At Arches National Park it is possible to 
study deformation bands that have formed under similar 
stress states, but in sandstones with different sorting. If 
the host rock is well-sorted, grain crushing is well- 
developed in the deformation bands, whereas almost no 
grain crushing develops in poorly-sorted sandstone 
(Antonellini et al. 1994). 

Deformation, bands in poorly sorted sandstones are 
thinner and accommodate more offset (Fig. 1) than 
those formed in well-sorted sandstones (Antonellini et 
al. 1994). Large offset (>lO m) fault zones in poorly 
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Fig. 1. Relation between offset in the deformation band and porosity 
in the host rock. Deformation bands with no cataclasis forming in 
poorly sorted sandstones accommodate more offset than deformation 

bands with cataclasis that form in well-sorted sandstones. 
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sorted sandstones and/or in sandstones with high clay 
content tend to be very localized: the fault-related 
deformation is restricted to a few decimeters across the 
fault zone (Antonellini et al. 1994). On the other hand, 
in well-sorted sandstones the fault-related deformation 
is spread over several tens of meters across the fault zone 
(Antonellini & Aydin in press). Apparently poor grain 
sorting in the sandstone promotes localized deformation 
and inhibits the strain hardening effect observed in high- 
porosity, well-sorted sandstones (Rudnicki & Rice 1975, 
Aydin & Johnson 1983, Antonellini et al. 1994). 

Understanding the factors controlling microstructure 
development and localization characteristics of defor- 
mation bands is important for predicting the petrophysi- 
cal properties and the distribution of faults in sandstone. 
Deformation bands and slip surfaces may create a 
barrier to fluid flow in the direction perpendicular to 
their plane if their microstructure is associated with 
porosity reduction and grain crushing. In contrast, de- 
formation bands and slip surfaces may provide a prefer- 
ential conduit for fluid flow in the direction parallel to 
their plane because of volume increase in the fault zone 
due to positive dilatancy or because of the slip-plane 
discontinuity (Antonellini & Aydin 1994). 

The mechanics of an aggregate of particles in contact 
is complicated and few analytical solutions, under 
special boundary conditions, are available (Brandt 1955, 
Deresiewicz 1958). These solutions apply to particles 
with the same radii arranged in linear arrays (Hara 1935) 
or in simple cubic, body-centered cubic, and face- 
centered cubic packings (Duffy & Mindlin 1957, Rowe 
1962, Ko & Scott 1967, Maklhouf & Stewart 1967). At 
present the mechanics of complex particulate aggregates 
with different grain size distributions can only be studied 
via numerical modeling and lab experiments. The dis- 
tinct element method (DEM) provides a tool to investi- 
gate the behavior of an aggregate of discrete particles 
that move and interact with each other during shearing 
and volumetric deformation within a fault zone. In this 
paper we present results from numerical experiments 
performed with the DEM on an idealized granular 
material made up of cylindrical elements with uniform 
or different size radii. The elements themselves are not 
crushed during an experiment. However, the magnitude 
of the axial stresses resolved by the grains on the bound- 
ary blocks and of the contact forces in between elements 
as a function of sorting and porosity, enable us to 
determine the potential for grain crushing during shear- 
ing and compaction in an idealized deformation band. 

THE DISTINCT ELEMENT METHOD 

The distinct element method simulates the behavior 

gram, and these iterations have a duration determined 
by a small time step (At). Block movements result in 
forces at their points of contact with neighboring blocks 
and these can be calculated using a defined force- 
displacement relationship. 

The Distinct Element Method (DEM) was first ap- 
plied to rock and soil mechanics problems by Cundall 
(1971). It derives from the Particle Dynamics Method 
(PDM) extensively used in chemistry and physics (Allen 
& Tildsley 1987, Gould & Tobochnick 1988) to model 
liquid and gas behaviors as well as atomic and subatomic 
particle interactions (Hackney & Eastwood 1989). 

Early developments of the DEM were concerned with 
studying the failure of jointed rock masses (Cundall 
1971, Maini et al. 1978, Lemos et al. 1985). Soon it 
became apparent that the DEM had potential appli- 
cations to soil mechanics, specifically in the effort to 
develop constitutive relations for granular media (Cun- 
da11 & Strack 1979, Cundalll987,1988,1989). In fact, a 
granular medium is composed of distinct particles that 
interact only at contact points; these discrete character- 
istics of the medium result in a complex behavior during 
loading of the particulate system. 

The problem of shear band localization in an idealized 
granular material has been investigated with the DEM 
by Cundall(1989) and by Bardet & Proubet (1992a, b). 
In these numerical experiments it was observed that the 
shear band width decreased as the amount of strain in 
the sample was increased. All the experiments reported 
in this context have been conducted on systems of 
elements with the same size or with very similar size (e.g. 
a ratio of 25/15 between radii of different elements). 

Recently, the DEM has been used in sedimentology 
to study the micromechanics of bedload transport (Jiang 
& Haff 1993) and to simulate aeolian saltation and 
mechanical sorting of grains (Haff & Werner 1986, 
Werner 1987, Anderson & Haff 1988, 1991). Appli- 
cations of the DEM to faulting in the overburden above 
reactivated basement normal faults of an extending 
region have been investigated by Saltzer & Pollard 
(1992)) and a DEM analysis of the boundary conditions 
used in laboratory sand-box experiments has been pre- 
sented by Saltzer (1993). 

A description of the force-displacement laws and of 
the equations of motion implemented in our DEM code 
is given in the appendix. Further details on the formu- 
lation of the distinct element code and comparison with 
existing codes such as BALL, TRUBAL (Cundall & 
Strack 1979, Strack & Cundall 1984) and DEC (Saltzer 
1992) are presented in Antonellini (1994). 

EXPERIMENTS 

of a system of discrete elastic blocks under the effect of Boundary conditions 
some specified force or displacement boundary con- 
ditions (Cundall 1971). The interaction between the To investigate the microstructure of deformation 
blocks is controlled by their shear and normal stiffnesses bands we study a small volume of granular material 
and by a friction law at the contacts. The movements of (Fig. 2) that is deformed in a numerical ‘testing 
the blocks are calculated at every iteration in the pro- machine’ (Fig. 3a). At this point in the study of defor- 
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Fig. 2. Boundary conditions in a deformation band. Under remote stress state conditions (u;, c$) deformation localizes in 
a narrow band across which some shear offset occurs. Normal and shear tractions are applied at the boundaries of a small 

volume of material in the deformation band. 

mation bands we are not concerned with the problem of 
localization of deformation into a narrow zone (shear 
band) but only with the factors that control the stresses 
acting on the band, and the development of the micro- 
structure within the band. 

The boundary conditions on the idealized defor- 
mation band and the experimental set up are presented 
in Figs. 2 and 3(a). In the figures presenting the results of 
the experiments we use a simplified representation of 
the testing machine which is shown in Fig. 3(b). Under 
remotely applied stresses (di, c$) the grains along the 
boundaries of a small volume of granular material within 
the area of shear localization are subject to a complex 
distribution of normal and shear tractions. To approxi- 
mate these boundary conditions in the DEM, we confine 
the volume of granular material with four rectangular 
rigid blocks that can move with a specified velocity (Figs. 
3a and 5b). These bounding blocks are designed to 
impart the average tractions from the complex distri- 
bution of actual tractions to the grains they contact. 

The bounding blocks can be used to impart either a 
velocity boundary condition or a traction boundary 
condition (Fig. 3b). In both cases a boundary velocity is 
specified. The bounding blocks are analogous to the 
actuators of a servo-controlled testing machine (Fig. 
3a). The traction boundary conditions are imposed by 
controlling when and in what direction the blocks move. 
They move at a constant velocity toward the interior of 
the sample if the average normal traction resolved by the 
grains on the block is less compressive than the pre- 
scribed traction, whereas they move at a constant veloc- 
ity away from the center of the sample if the average 
normal traction resolved by the grains on the block is 
more compressive than the prescribed stress. 

An experiment is performed on the granular aggre- 
gate by moving the top and bottom blocks along the y 
axis and the lateral blocks along the x axis. If the top and 
bottom blocks also move along the x axis as shown in 
Fig. 3(b), it is possible to impose shearing in addition to 

biaxial loading. We hypothesize that such loading simu- 
lates on a first approximation the boundary conditions 
that control the formation of microstructures within 
deformation bands. 

The displacement of the blocks can be controlled to 
simulate different degrees of confinement on the granu- 
lar material (corresponding to different confining press- 
ures). The stresses developing in the granular aggregate 
are a function of the displacements only, not of the rate 
(velocity) at which they are applied. During movement 
the boundary blocks do not interfere with one another 
(Fig. 3a), because the two lateral blocks are shortened at 
the same rate the top and bottom blocks approach each 
other. Using purely velocity boundary conditions one 
can control the movements of the walls and therefore 
control the bulk volumetric strain. Experiments with 
uniform grain sizes and regular packing have been done 
using both kinds of boundary conditions. Experiments 
with different grain size distributions have been done 
using only velocity boundary conditions. 

Sample preparation 

Two methods of element generation are employed. 
The first generates regular packings of elements within 
the volume, and is used when the system is made up of 
elements with the same radius. The second method is 
based on a random particle generator and is employed to 
study the behavior of a system of elements with very 
different radii. In this latter case any set of elements 
corresponding to the desired grain size distribution can 
be generated in the volume. A random number gener- 
ator produces the coordinates of the elements centroid; 
first the large grains are created and then small grains in 
order of decreasing diameter (Fig. 4a). If an element 
overlaps another one it is discarded. The random num- 
ber generator tries to fit an element in the voids left at 
any given instant in time, repeating this operation until a 
satisfactory number of elements is available. It is poss- 
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Fig. 3. (a) Idealization of the experimental set up for the numerical testing machine that has been used to make 
experiments on the granular media discussed in this paper. Normal and shearing velocity boundary conditions can be 
applied to the top and bottom plates, whereas normal velocity or servo-controlled stress boundary conditions can be applied 
to the lateral walls of the testing machine. The lateral walls can deform without interfering with the top and bottom plates. 

(b) Simplified representation of the testing machine and of the boundary conditions used in the figures of this paper. 

ible to avoid a bias in element distribution by using a 
large volume to generate the elements. 

After the granular material has been generated it is 
compacted to a prescribed porosity before the experi- 
ment. To achieve the desired compaction, the four walls 
of the testing machine are moved toward the interior of 
the sample at an equal constant velocity. Once the 
granular aggregate has reached the required porosity the 
walls of the testing machine are stopped and the sample 
is left to stabilize for about 1000 iterations (Fig. 4b). 
After compaction and stabilization an experiment is 
performed by moving the boundary walls according to 
the specified boundary conditions. 

The results of an experiment can be viewed by watch- 
ing the positions of the elements at a given snapshot in 
time and/or by analyzing the average tractions resolved 
on the boundary plates. For example, the stress on the 
top plate of the testing machine (axial stress) can be 
plotted vs the axial strain. The analysis of this curve in 
conjunction with the observation of the element posi- 
tions at a given time provide insights into the contact 
forces arising between the elements and on the average 
stresses within the granular aggregate. The effect of the 
development of specific structures on the average 
stresses in the granular aggregate can therefore be 
monitored during the experiment. 
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Fig. 4. Preparation of a sample with elements of different sizes. (a) 
Elements are generated randomly according to a specified grain size 
distribution within the volume of the testing machine. (b) The sample 
is compacted at the porosity desired for the experiment that we want to 

make. 

Experiments with uniform grain size 

One hundred and five elements arranged in regular 
hexagonal packing, or in alternate layers of cubic and 
hexagonal packing, were generated within the volume of 
the testing machine (Fig. 3a). The elements have a 
radius of 4 mm, a density of 2800 kg rnA3 and a length of 
25 mm. To simulate a geologic material we use a 
Young’s modulus E = 95.3 GPa (typical for quartz; 
Zhang et al. 1990) and a Poisson modulus Y = 0.25. The 
coefficient of sliding friction, ,u, is set to 0.5. 

The first set of experiments were conducted in the 
biaxial configuration without a shear velocity at the top 
and bottom plates of the testing machine. Two element 
configurations have been considered. In the first the 
elements were arranged in a closest hexagonal packing 
with a porosity of 0.153. In the second the elements were 
arranged in rows with cubic packing (4 rows) sand- 
wiched between elements arranged in hexagonal 
packing (8 rows); the initial porosity of the aggregate 
was 0.22. 

The velocity of the upper plate in the y direction was 
set to 0.01 mm per time increment (At = 0.05423 s); the 
lateral walls moved at a velocity that allows the sample 
to deform with a small volumetric strain; typically after 
10,ooO iterations the volumetric strain of the sample is 
less than +0.02, while the axial strain is -0.14. The 
velocity Ff the lateral walls is arbitrary and it is chosen to 
simulate the amount of volumetric strain usually ob- 
served in lab experiments on soil samples (Wood 1990). 
If we impose a deformation with zero or negative volu- 
metric strain, the axial stresses during an experiment 
increase steeply because of the large interpenetrations 

between neighboring elements. If the interpenetrations 
become too large the experiment may become unstable. 
Physically, large interpenetrations correspond to large 
contact forces which would cause the crushing of the 
elements in the sample. 

Figure 5 shows the evolution of the vertical stress 
resolved by the elements on the upper plate of the 
testing machine with time. In the high-porosity sample 
(Fig. 5a) the stress increases steeply at the beginning of 
the experiment as the elements react to the movement of 
the plates (stage 1). After this initial stage, the curve 
flattens (stage 2) and after the axial strain has reached a 
value of -0.08 the granular medium softens producing a 
decrease in the stress on the plate. Observations of the 
element positions demonstrate this. Stage 1 represents 
the destruction of the skeleton of contacts in the cubic 
packing and stage 2 is characterized by the movement of 
grains by a particulate flow mechanism. Particulate flow 
is a discontinuous deformation mechanism that involves 
grain sliding and rotation (Borradaile 1981). In our 
experiments we observe that this mechanism allows 
grains to slip and roll past one another by creating local 
disorganized areas of dilatancy. Particulate flow results 
in a distributed intergranular deformation that does not 
localize in any specific area of the sample. Particulate 
flow has been experimentally observed in Berea Sand- 
stone deformed at low effective stresses (Handin et al. 
1963). It is also commonly observed in sediment-fluid 
mixtures (Lasek 1992). 

The same experiment performed on a regular tight 
hexagonal packing of circular elements produces a much 
different result (Fig. 5b). The stress on the top plate 
increases with a relatively steep gradient from 0 to -0.07 
axial strains (stage l), then the curve flattens out and the 
stress decreases gradually until -0.12 axial strain (stage 
2), after which the stress increases again in a relatively 
steep fashion (stage 3). 

In the stress-strain curves, the steeper segments cor- 
respond to the growth of shear bands in the granular 
aggregate (Figs. 6a and c) and the consequent increase in 
stresses due to the dilatation in the band as the elements 
slide past each other. The flatter or shallower slope 
segments of the stress-strain curve correspond to the 
destruction of porosity in the shear band and the sub- 
sequent rearrangement of the elements into a tighter 
hexagonal packing (Fig. 6b). The stress does not go back 
to zero after destruction of the dilatancy in the first set of 
shear bands, because the impact damping scheme 
employed imposes a linear gain in energy of the ele- 
ments during the experiment. It is also apparent by the 
change in scale of the diagrams that the magnitude of the 
stress during the second experiment (Fig. 5b) is 10-100 
times larger than in the first (Fig. 5a). These obser- 
vations indicate that it is easier to cause grain movement 
in a high-porosity sample than in a low-porosity one. In 
the first sample the grains arranged in a cubic packing 
move by sliding away from their initial contact points to 
the sides without finding any obstacle; this causes com- 
paction and porosity reduction. In the second sample the 
grains arranged in an hexagonal packing move by climb- 
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Fig. 5. Biaxial test on the granular aggregate. (a) Vertical stress on the top plate of the testing machine in an high-porosity 
granular medium (porosity = 0.22) with uniform grain size distribution. (b) Vertical stress on the top plate of the testing 
machine in a low-porosity granular medium (porosity = 0.153). (c) Axial stress difference between the experiment with 

shear at the top and bottom walls and the experiment with no shear (Fig. 6b). 

ing up on the neighboring grains, thereby increasing 
locally the porosity within a zone that develops into a 
shear band; this porosity increase causes large contact 
forces resulting in larger average tractions on the bound- 
ary blocks. 

To simulate the boundary conditions within a defor- 
mation band in a well-sorted sandstone arranged in a 
tight hexagonal packing, a shear velocity (Y = 0.05 mm 
At-‘) was imparted to the top and bottom walls of the 
testing machine together with the already mentioned 
normal velocities. The result of the experiment (Fig. 7) 
shows that the shear on the boundary walls does not 
cause many changes in the style of deformation. As 
demonstrated in Fig. 7, two shear bands are well- 
developed at an axial strain of -0.028 (Fig. 7b), at an 
axial strain of -0.056 the porosity in the band starts to be 

destroyed (Fig. 7c), and at an axial strain of -0.084 the 
shear bands have disappeared. In this experimental set 
up the shear at the walls has no influence on where and 
when the shear bands form in the granular system. The 
stress difference between the experiment with shear 
velocity at the top and bottom walls and the experiment 
with no shear velocity is on the order of 1% of the total 
stress (Fig. 5~). 

Experiments with different grain size distributions 

One of the objectives of our project was to study the 
effect of sorting of particles on the mechanical behavior 
of the granular system subjected to simple loading his- 
tories. This investigation can provide insights on the 
bulk behavior of a sandstone and on the specific behav- 
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Fig. 6. Biaxial experiment on a sample of uniform radii elements. The 
deformation is accommodated by the localization of dilatant shear 
bands (confined in between the shaded lines) that are subsequently 
compacted. The sense of shear is indicated by the arrows. (a) Dilatant 
shear bands form to accommodate the deformation. (b) The dilatation 
in the shear bands disappear as the sample is compacted. (c) More 

shear bands form to accommodate further deformation. 

ior of the gouge material in a deformation band. Frag- 
mentation processes in fault zones, in fact, cause grain 
size reduction and the development of poorly sorted 
grain size distributions (Turcotte 1992). Our results 
clearly are relevant to the study of small faults and they 
also may be relevant to the study of more complex fault 
zones. 

Before describing the experiments in detail, it is 
necessary to quantify some parameters that allow us to 
compare different grain size distributions. Poorly sorted 
sediments are usually associated with catastrophic mass 
transport events and/or with diagenetic and mechanical 
processes that change the grain size distribution via 
mineral alteration and/or mechanical breakage of the 
grains. In this study we restrict ourselves to the particle 
size distributions that have been generated by fragmen- 
tation and diagenesis, because a framework in which to 
compare them is available (e.g. Blenkinsop 1991). 

Extensive work has been done in documenting and 
measuring grain size distributions in the gouge material 
of fault zones (Biegel et al. 1989, Marone & Scholz 1989, 
Sammis & Biegel 1989, Blenkinsop 1991). Blenkinsop 
(1991) has documented that power-law distributions can 
approximate the observed grain-size distributions pro- 
duced by diagenetic and fragmentation processes be- 
tween limits of 0.3 and 0.03 mm (these limits are called 
the upper and lower fractal limits by Blenkinsop 1991). 

Sammis & Biegel (1989) argue that such distributions 
can be characterized by a dimension (or exponent), D, 
expressed as 

where N(n)IA is the number of particles of class n per 
unit area (or volume if considering a three-dimensional 
case), and L(n) is the average diameter of the particles in 
class n. A class is a set of particles with very similar size. 
A D = 2.5-2.6 corresponds to the self-similar (fractal) 
grain size distribution of Sammis & Biegel(1989). 

Shear tests on artifical gouges of Ottawa sand and 
Westerly granite (Biegel et al. 1989, Marone & Scholz 
1989) have shown that grain crushing and comminution 
produce particle-size distributions with D = 2.58-2.6. A 
similar grain-size distribution (D = 2.6) has been docu- 
mented in the Lopez fault zone of the San Gabriel 
Mountains in California (Sammis et al. 1987). Marone & 
Scholz (1989) and Blenkinsop (1991) have noticed that 
with high confining pressures D tends to increase (D > 
2.6), which corresponds to the disappearance of the 
largest particles from the grain-size distribution, a 
phenomenon that has also been qualitatively observed 
by Engelder (1974). On the other hand, weathering and 
diagenesis (Blenkinsop 1991) tend to produce grain size 
distributions with smaller D (D -=c 2.6). 

Samples with power-law grain-size distributions 
(Fig. 8), characterized by a D between 0.88 and 5.0 and a 
radius between 1 and 4 mm, were generated using 
equation (1) and compacted to initial porosities of 0.2 
and 0.153. The range in D we investigated corresponds 
to that observed and documented by Blenkinsop (1991). 
We also used a uniform size distribution of grains with 
large radius (4 mm) to study the effect of grain size. All 
samples had the same mass. The experiments were done 
with a procedure similar to that of the experiments with 
a regular packing but with a smaller time step (At = 
0.027 s). 

We monitored the stresses during compaction of the 
aggregates to 0.2 and 0.153 porosity. The desired com- 
paction with the lowest stress in the sample is achieved 
with a grain size distribution corresponding to D = 2.5 
(Figs. 9a and b). Overall grain size distributions skewed 
towards small grain sizes are easier to compact than 
grain size distributions with large grain sizes. However, 
it seems that only the distribution with D = 2.5 has the 
elements in the right proportion to require the minimum 
amount of energy needed to achieve the desired com- 
paction. 

First we describe a set of experiments after initial 
compaction to 0.2 porosity. Figures 10(a) & (c) rep- 
resent experiments with no shear velocity and Fig. 10(b) 
shows the stress difference between the experiments 
with a shear velocity at the top and bottom plates of the 
testing machine and those with no shear velocity. The 
peak stress is greatest in experiments with a uniform 
grain size distribution of large particles and is less (factor 
-8) for the size distribution with D = 0.88 (Fig. 10a). 
The peak stress in these experiments tends to decrease 
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Fig. 7. Deformation band simulation. Shaded lines bound the shear bands forming in the aggregate; the arrows give the 
sense of shear. (a) Sample in initial conditions. (b) At an axial strain of -0.028 the shear bands are in their dilatant stage. 
(c) At an axial strain of -0.056 the shear bands are in their compacting stage. (d) At an axial strain of -0.084 no very well- 

defined shear band is present. 

as the exponent of the distribution increases except for 
distributions with D > 2.5. This observation indicates 
that sorting is important in controlling the stresses dur- 
ing deformation. 

A secondary factor also controlling the stresses is the 
element size. The aggregates with D > 2.5 have small 
elements that are almost uniform (well-sorted). The 
subordinate dependency of the stress on element size is 
surprising and will be discussed later. 

The curves in Figs. 10(a) & (c) do not show the steps 
and plateaus present in those experiments where a shear 
band localizes in the granular aggregate (Fig. 5b). An 
exception is represented by the uniform distribution in 
Fig. 10(a); the stress-strain curve for this distribution 
shows subordinate steps corresponding to the appear- 
ance of disorganized shear bands in the sample. In the 
models compacted to 0.2 porosity the stresses exhibit an 
initial increase, and tend to level out as the elements 
deform with a bulk flow mechanism. By watching snap- 
shots of the experiments at different intervals it is clear 
that well-developed shear bands do not develop, but 
deformation is accommodated more or less uniformly 
across the sample. We call this style of deformation 
particulate flow, because the particles slide and roll past 
one another with no apparent order (‘independent parti- 
culate flow’ of Borradaile 1981). The difference in the 
stress history (difference in axial stresses) between ex- 
periments with and without shearing is on the order of 
20-30% of the total stress for the uniform grain size 
distribution and less than 10% for the poorly sorted 
distributions. 

Another set of experiments has been conducted after 
an initial compaction of the samples to 0.153 porosity; 

for brevity only some selected results are presented 
here. Figures 11(a) & (c) show the results of the experi- 
ments for the case with no shear at the walls and Fig. 
11(b) shows the stress difference between experiments 
with and without shear at the walls. The stress-strain 
curve for the sample with a uniform grain size distri- 
bution illustrated in Fig. 11(a) shows several breaks in 
slope (labeled ‘sb’) that are better organized than those 
in Fig. 11(a). Examination of the element positions at 
the time of these changes in slope indicates that they are 
associated with the growth of shear bands and the 
subsequent collapse of the pore space created by dila- 
tancy. In the experiment with no shear at the walls 
(Fig. 11 a) three episodes of shear band localization take 
place before the strains reach a value of -0.14. The 
breaks in slope marking the end of shear band growth 
are not evident in the power law distributions. These 
observations indicate that a large initial compaction (i.e. 
lower initial porosity; 0.153 compared to 0.2) promotes 
localized deformation in granular aggregates with uni- 
form grain size distribution. 

The magnitude of the stresses of these experiments is 
approximately 100 times larger than in experiments with 
samples compacted to 0.2 porosity. A significant differ- 
ence in the stress-strain history between experiments 
with and without shearing is present only for the case of 
the uniform size distribution and for the power law 
distribution with D = 0.88 (order 10% of the total 
stress). In the experiment on the sample with D = 2.5 
the stresses have the lowest value. Samples with larger 
exponents (D > 2.5) deform at larger stresses probably 
because the grains become more and more uniform in 
size. 
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Fig. 8. Samples with different power law grain size distributions tested in biaxial experiments and in the numerical set up to 

simulate deformation bands boundary conditions. The samples are represented after 50,000 iterations. The grain size 
distributions are given by the histograms; the exponent of the distribution varies from 0.88 to 4.0. 

Poorly sorted distributions, corresponding to 0.88 < 
D < 3.0, tend to promote deformation of the particles by 
a bulk flow mechanism (particulate flow) rather than by 
shear bands localization at both levels of initial compac- 
tion. 

Nucleation and growth of a shear band 

Here we examine in detail the kinematics of move- 
ment of the cylindrical elements that lead to the develop- 
ment of the shear bands shown in Fig. 6(a). These 
observations provide important insights for the process 
of deformation band localization in nature. 

We look at snapshots of the experiment at the very 
early stage of shear band growth and at short intervals in 
time after that (- every 100 iterations). At an axial 
strain of -0.02 (Fig. 12a) no shear band has developed. 
However, at this time four potential nucleation sites, 
represented by areas of dilatancy (black highlight), have 
formed. At an axial strain of -0.021 (Fig. 12b) the first 
development of two organized zones of dilatancy is 
observed. These zones initiate from the two central 
nucleation sites and propagate along a surface oriented 
at 30” to the direction of maximum shortening. The two 
shear bands grow quickly and at an axial strain of -0.022 

(Fig. 12~) they have propagated almost completely 
through the sample (Fig. 12d). 

The presence of ‘weak’ grains can also trigger the 
nucleation and subsequent growth of shear bands in 
granular media. A weak grain is one that, because of its 
physical properties (e.g. cleavage, grain boundaries, 
fractures, etc.), can fail under smaller applied loads than 
the surrounding grains. We examine the influence of a 
weak grain on shear band localization with a biaxial 
numerical experiment. In this experiment the critical 
contact force for that particular grain is reached at an 
axial strain of -0.011. When the critical contact force is 
exceeded the grain is crushed and we substitute four 
smaller cylindrical elements for the original grain (Fig. 
13a). The sum of the volumes of the four smaller distinct 
elements is set at about 70% of the volume of the 
original grain. This does not represent a loss of mass, 
rather by decreasing the total volume one can simulate 
the loss of load bearing capability of the crushed grain. 
We imagine that 30% of this grain is cornminuted into 
much smaller fragments that fill voids, but do not play 
any significant role in the forces transmitted through the 
aggregate. Soon after collapse of the central grain four 
shear bands develop and propagate from the boundary 
plates towards the crushed grain (Figs. 13b & c) in a few 
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Fig. 9. Maximum applied stress required to compact samples with different grain size distributions to a porosity of 0.2 (a) 
and 0.153 (b). The grain size distribution which is easier to compact has an exponent D = 2.5. 

tens of iterations. The localization of shear bands starts 
just after an axial strain of -0.014, whereas, in the 
sample without a weak grain, localization of shear bands 
starts after an axial strain of -0.021 has been reached. 

This experiment illustrates the effect of the testing 
machine boundaries in controlling the nucleating posi- 
tions of the shear bands, The movement of the rigid 
boundary blocks induces large contact forces in their 
proximity, and these forces control the nucleation of 
shear bands at the boundaries. However, in nature, it is 
more likely that the crushed grain itself is the nucleating 
position of the shear bands. 

The collapse of a ‘weak’ grain controls the time at 
which shear bands localize in the sample, but not necess- 
arily their nucleating position. To further investigate the 
effect of ‘weak’ grains on the localization and distri- 
bution of deformation bands we have devised an experi- 
ment with the ‘weak’ grain shifted two elements to the 
right from the center of the sample (Fig. 14a). After 
grain failure (at an axial strain of -O.Oll), shear bands 
localize in the sample (between -0.012 and -0.014 axial 
strains) with a pattern that is similar to that illustrated in 

Fig. 13(b). Four shear bands grow toward the crushed 
grain (Fig. 14b); they are shifted to the right with respect 
to the center of the sample. In this experiment two 
additional shear bands develop in the left portion of the 
sample (Fig. 14b). From the results of this experiment it 
appears that once the ‘weak’ grain has collapsed, strain 
is accommodated via shear bands in zones not in close 
proximity to the crushed grain. As the experiment 
proceeds some of the initial shear bands are abandoned 
and two of them develop more fully in the aggregate 
(Fig. 14~). 

DISCUSSION AND CONCLUSIONS 

The DEM experiments on samples with poor sorting 
demonstrate that deformation via bulk flow occurs at 
relatively low stresses in the granular aggregate, which 
result in small forces at grains contacts unlikely to cause 
grain crushing. These numerical results compare well 
with the observation that, in poorly sorted sandstones, 
deformation bands do not show well-developed grain 
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stress difference between an experiment with shearing velocity at the top and bottom walls and the experiment in (a). (c) Biaxial 

experiments on samples with large exponents power law distributions (D > 2.5). 

crushing and are usually associated with larger offsets 
(Fig. 1) compared to deformation bands in well-sorted 
sandstone (Antonellini et al. 1994). According to Lambe 
& Whitman (1969) poorly sorted soils have a lower 
degree of interlocking among grains than well-sorted 
soils. They also argue that the degree of interlocking 
controls how easily a granular aggregate can fail in 
shear. We suggest that grains deforming via particulate 
flow in a deformation band within poorly sorted sand- 
stone can accommodate more offset because of the 
lower degree of interlocking among the grains. 

The results of the DEM experiments indicate that the 
stresses during deformation of a granular aggregate are 
controlled by the competition of two factors: (1) the 

grain-size distribution (uniform vs unsorted); and (2) the 
size of the grains (the larger the grains, the larger the 
stresses). The second factor is subordinate in respect to 
the first one. Grain-size distributions skewed towards 
small grain sizes (D = 2.5-3.5) but not completely made 
up by small grains require the minimum amount of 
energy during deformation. In the case of hydrostatic 
compaction this ‘minimum energy configuration’ is rep- 
resented by the grain size distribution with D = 2.5. In 
the case of biaxial experiments the ‘minimum energy 
configuration’ is represented by grain-size distributions 
with D = 2.5 for samples initially compacted to 0.2 
porosity, and with D = 2.5-3.0 for samples initially 
compacted to 0.153 porosity. The latter value is very 
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Fig. 11. (a) Biaxial experiment. Vertical stress on the top plate of the testing machine. Samples compacted to 0.153 
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similar to that measured in fault gouges in both experi- 
ments (Biegel & Sammis 1989, Marone & Scholz 1989) 
and in outcrop (Sammis et al. 1987). 

The dependency of the stress on element size is 
surprising, because one would expect a self-similar be- 
havior for elements with large and small radius if the 
element distributions are uniform. Our numerical ex- 
periments, however, are in agreement with lab experi- 
ments on glass bead samples by Yin et al. (1993) and on 
sandstone samples by Zhang et al. (1990). In particular 
Yin et al. (1993) have observed that large grain size 
samples have consistently higher P and S wave velocities 
in respect to small grain size samples and, during load- 
ing, they have high levels of acoustic emissions associ- 
ated with grain crushing. Grain crushing, on the other 

hand, is not observed in small grain size samples. A grain 
size effect has also been observed in the microstructure 
of deformation bands within siltstones of the Dewey 
Bridge member of the Entrada Sandstone at Arches 
National Park. The deformation bands in this fine- 
grained rock do not show any sign of cataclasis. We think 
that the element size dependency that we observe in the 
numerical experiments is related to the displacement 
boundary conditions employed, to the size of the ele- 
ments relative to the size of the sample, and to the 
smaller contact forces that arise in a sample with smaller 
grains because of the partition of the load on a larger 
number of contact points respect to a sample with large 
grains. 

The effect of porosity on the mode of deformation is 
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Fig. 12. Growth of a shear band. Dilatancy in black. Shear bands are individuated by the shaded lines. The arrows indicate 
the sense of shear. (a) At an axial strain of -0.02 iterations the shear bands are not developed, there are four areas of 
increased porosity. (b) Two shear bands nucleate at an axial strain of -0.021. (c) The two shear bands quickly propagate 

through the sample. (d) At an axial strain of -0.024 the shear bands have completely propagated through the sample. 

also important. A uniform grain size sample compacted 
to 0.2 porosity exhibits flow instead of localization 
during biaxial deformation; in fact, the stress-strain 
curves of the experiments performed on these samples 
(Fig. 10) do not show the characteristic ‘step-like’ geom- 
etry that is present in some of the experiments con- 
ducted on samples compacted to 0.15 porosity (Fig. lla) 
and on the samples with a regular packing (Fig. 5b). 
Dunn et al. (1973), Hirth & Tullis (1989), Bernabe & 
Brace (1990), and Rutter & Hadizadeh (1991) have 
shown in laboratory experiments on sandstone samples 
that high porosities cause the deformation to remain 
distributed, and in the form of cataclastic flow. Low- 
porosity sandstones, on the other hand, fail by localiz- 
ation and strain softening (Hirth & Tullis 1989). Our 
numerical experiments are consistent with these labora- 
tory results. 

Deformation via localization of shear bands rep- 
resents a discontinuous deformation that is apparent by 
the staircase geometry in the stress-strain curve. The 
localization of a shear band causes the deformation of 
the sample to proceed in steps (Fig. 5b): during each step 
the stress first increases steeply (‘dilatational stage’ of 
shear band growth) and then it decreases or stabilizes 
(‘compaction stage’ of shear band growth). The defor- 
mation in the sample is therefore non-uniform. Provided 
a criterion for grain failure is met, it is likely that grain 
crushing occurs during the maximum dilatational stage 
of shear band growth when the contact points among 
grains in a shear band are relatively few and the contact 
forces are relatively high. The actual mechanism of grain 
crushing is via opening mode cracks that start at contact 
points and propagate through the grain (Aydin 1978). 

It is commonly observed in high-porosity sandstones 

(Aydin 1978, Aydin & Johnson 1983, Antonellini et al. 
1994) that, after localization of a deformation band 
accompanied by grain crushing and compaction, further 
offset is accommodated by localization of another defor- 
mation band adjacent to the first one. The grain size 
distribution in the deformation band is extremely 
unsorted, whereas in the surrounding host rock the grain 
size distribution can be very well-sorted. These obser- 
vations appear to contradict the DEM result that indi- 
cates granular aggregates with unsorted grain size distri- 
butions can deform at lower stresses than granular 
aggregates with well-sorted grain size distributions. 
However, this contradiction is only apparent: defor- 
mation bands that have formed in high-porosity sand- 
stones (-0.20) have a porosity that is one order of 
magnitude smaller (0.01-0.02) than in the surrounding 
host rock (Antonellini et al. 1994, Antonellini & Aydin 
1994). If we compare Fig. 11(a) and Fig. 10(a) it is clear 
that almost two orders of magnitude greater stresses are 
required to deform a sample compacted to 0.15 porosity 
with a poorly sorted grain-size distribution (D = 0.88) 
compared to a sample with uniform grain-size distri- 
bution, but compacted to 0.2 porosity. 

In light of these numerical experiments we tentatively 
conclude that the phenomenon of strain hardening 
(Rudnicki & Rice 1975) after development of a defor- 
mation band in a porous sandstone is not due to the 
crushing of grains into fragments of different sizes, but 
rather to the compaction of the granular aggregate to a 
lower porosity during shearing. However, because the 
DEM considers grains that are approximated by a circu- 
lar shape, we cannot assess the effects of the angularity 
of crushed grains that may also contribute to strain 
hardening. 
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Fig. 13. ‘Weak’ grain-controlled growth of shear bands. Dilatancy in 
black. Shear bands are individuated by the shaded lines. The arrows 
indicate the sense of shear. (a) A weak grain collapses at an axial strain 
of -0.011. (b) Shear bands propagate from the machine boundaries 
toward the collapsed grain. (c) Shear bands have completely propa- 

gated toward the collapsed grain. 

The nucleation and growth of a shear band in the 
granular system we investigated starts from an area of 
local dilatancy and later grows into a fully developed 
shear band. The importance of dilatancy in geology has 
been discussed by Mead (1925), and later Frank (1965) 
pointed out how dilatancy is an important process during 
faulting and strain localization in a granular medium. 
More recently Marone & Scholz (1989) have discussed 
the role of dilatancy in lab experiments on simulated 
fault gouge. Dilatancy at the grain scale level in a 
sandstone has been recognized by Antonellini et al. 
(1994) in a microstructural study of deformation bands 
at Arches National Park. From thin section observations 
they were able to detect a porosity increase at the tip of a 
deformation band in a low-porosity sandstone (porosity 
- 9%). The process that they observed is at a grain scale 
comparable to the numerical experiment shown in 
Fig. 12. 

The position where a deformation band localizes in a 
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(W 

Fig. 14. ‘Weak’ grain-controlled growth of shear bands. Dilatancy in 
black. Shear bands are individuated by the shaded lines. The arrows 
indicate the sense of shear. (a) A weak grain that is shifted to the right 
respect to the center of the sample collapses at an axial strain of 
-0.011. (b) Shear bands propagate from the machine boundaries 
toward the collapsed grain and also in adjacent areas. (c) Two shear 
bands are fully developed. One of them passes through the collapsed 

grain. 

sandstone probably depends to some extent on the 
existence of an area of increased porosity or on the 
presence of a ‘weak’ grain that can crush under small 
contact loads. This scenario is supported by the experi- 
ments we have reported here and by lab experiments on 
loose granular aggregates reported by Desrues (1991). 
The collapse of the grain has the effect of localizing shear 
bands at lower loads. It also appears that the position of 
the ‘weak’ grain controls where shear bands are going to 
develop in the sample tested. However the boundaries 
of our experimental apparatus also play an important 
role in controlling the nucleating position of the shear 
bands. 

Summarising the results of our numerical study indi- 
cate that sorting and initial porosity of the host rock 
control the mode of deformation within a fault zone in 
granular material. By modeling the granular materials 
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APPENDIX 

Two critical parts of the DEM are the formulation of the force- 
displacement laws and of the equations governing the motion of the 
elements. In the following we give the details of our formulation. 

Force-displacement laws for elements 

The granular medium investigated in our experiments is represented 
by a system of cylindrical elements (grains’) with radii ranging from 1 
to 4 mm and with a length of 25 mm. The length of the cylinders is 
important to define their mass and is chosen so that the time step in the 
equations of motion is computationally efficient. Because of the inertia 
of the system, if the mass of the elements is large enough it is possible 
to use larger time steps without incurring instability problems. The 
motion of the elements is caused by the contact forces between 
elements and by contact forces arising from the movement of the four 
rectangular blocks that represent an idealized testing machine de- 
scribed in the section on boundary conditions. 

The fundamental equations governing the motion of the elements in 
the DEM are: 

F = ma (Ala) 

T = I& (AW 

where F is the net force acting on the element, m is the element mass, 
and (I the linear acceleration of the element. The net force on the 
element is the sum of the contact forces caused by the surrounding 
elements and of any body forces (e.g. that due to gravity). Body forces 
are not considered in our formulation of the DEM as they are 
insignificant relative to contact forces at the grain scale. The action of 
the tangential forces due to friction also exerts a torque or moment (T) 
on the element; this torque is expressed by equation (Alb) where I is 
the moment of inertia and &is the angular acceleration. The net torque 
(T) on the grain is the sum of the many moments caused by tangential 
forces imparted at contacts with the surrounding elements. 

Two contact forces develop: normal forces, F,, , act perpendicular to 
the tangent line of the contact, and tangential forces, F,, are parallel to 
the tangent line of the contact (Fig. Ala). During a single iteration of 
the program the particles move and overlap (Fig. Alb). The overlap 
(6,) represents the interpenetration between the elements. The time 
step during each iteration has to be small enough to prevent large 
unphysical interpenetrations and to provide stability for the system of 
particles. If the interpenetrations are small relative to the radii of the 
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Fig. Al. (a) Elastic Hertzian contact among two spherical grains. a is the half-width of the contact. F” and I$ are the 
normal and tangential forces arising during contact between the two grains. Under the action of a normal and a shear loads 
there are a normal traction distribution and a shear traction distribution along the contact 2~. (b) Two neighbor elements 
come in contact. The normal contact force F,, can be calculated from the overlap 6, between the two elements. (c) The 
tangential force F, can be calculated from the displacement 6, between the points of contact at two successive iterations. 
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cylinders they can be compared to the elastic deformations at the 
contact (Fig. Ala), if they are large they cannot be compared to the 
elastic deformation at the contact and they become unrealistic. 
According to Cundall(l971) and Haff & Anderson (1993) a suitable 
time step At should meet the requirement: 

d 
- 

hi c n 2 

where m is the mass of an element and k is the stiffness of the contact. 
The factor x enters this relation from the solution of the differential 
equation (equation (8) in Haff & Anderson 1993) that is needed to 
calculate the interpenetration of two grains during a collision; this 
relation is dependent on the duration of the collision and on the natural 
frequency of the spring (i.e. the stiffness of the contact). Care must be 
taken in choosing an appropriate At when using elements of different 
size. To avoid unexpected instability problems, the value of m used in 
the calculation of At should be that of the smallest particle. 

The normal contact force is related to the amount of interpenet- 
ration measured perpendicular to the tangent line, d, (Fig. Alb), via a 
force-displacement law of the form 

F, = K,J, 

where K. is the normal stiffness of the contact. The usual approach in 
the DEM is to assume that K, is constant, but according-to Hertz 
theory (Hertz 1882, Johnson 19851. K_ is related to the half-width a of 
the contact (Fig. Ala). Following’ar;‘approach similar to that men- 
tioned by Ng & Dobry (1992) we implemented a force-displacement 
law that uses a contact stiffness calculated from Hertz theory. Accord- 
ing to Hertz (1882) the normal stiffness of two cylinders in contact is: 

(A4) 

where G is the elastic shear modulus and Y is Poisson’s ratio of the 
solid. For two solids of revolution the half-width of the contact a in 
equation (A4) is related to the normal force F, by the equation 
(Johnson 1985 p. 93): 

where R is the ‘effective’ radius of the two solids in contact and E is 
their Young’s modulus. The load Fn at the contact is related to the 
amount of interpenetration d,, and (I is a non-linear function of F,. 

Using equation (10) from Johnson (1985 p. 89) it is possible to 
express the amount of interpenetration between the elements (6,) and 
the half-width of the contact (a) with the relation: 

a = (2R6,)ln (A6) 

where R is the ‘effective’ radius of the elements in contact, defined by 
Johnson (1985 p. 92) as: 

1 -= 1 + 1. 

R 4 R2 

In (A7) RI and R2 are the radii of the two solids in contact. Substituting 
equation (A6) into equation (A4), the normal stiffness in terms of the 
interpenetration assumes the form: 

Kn=qif&q. (‘48) 

This formulation of the stiffness used in equation (A3) allows one to 
calculate the reacting force at a contact according to Hertz theory. 

When the load between two elements is not applied along their 
centerline a displacement 6, arises between distant points in the blocks 
(Fig. Ale). This tangential displacement is related to the shear contact 
force F,. The force-displacement law for the tangential forces that is 
generally used in the DEM has the form: 

where KS, the shear stiffness of the contact, is a constant. However, 
Mindlin & Deresiewin (1958) have shown that slip should be taken 
into account. Slip, in fact, by dissipating energy introduces non- 
linearities different from the Hertz non-linearity (Mindlin & Dere- 
siewia 1958). The changes in stress and displacement caused by a 
slipping contact depend upon the initial state of loading of the contact 

and the entire past history of loading. The complete solution to this 
boundary value problem is given by Mindlin & Deresiewicz (1958). 

In our version of the DEM we have not implemented the complete 
solution that takes slip into account. Rather we have used a simplifi- 
cation that is a linear, normal-force-dependent law. This law uses the 
initial tangential stiffness given by Mindlin & Deresiewin (1958) and 
disregards the history of loading at the contact. The formulation of the 
contact shear stiffness KS for two cylinders is 

nGa* 
Ks = 2RZ( 1 - v) (Al’3 

By substituting (A6) into (AlO) we obtain: 

xG& 
Ks = R(l - v) (All) 

and the shear force-displacement law can be calculated using 
equations (A9) and (All). 

During movement the elements interpenetrate causing shear forces 
at the contacts. If these forces are very small the elements deform 
elastically and do not dissipate any energy (energy dissipated by slip is 
neglected in the DEM), but if they are large there can be some sliding 
with consequent energy dissipation. At every iteration of the program 
the tangential force between each element in contact is checked to see 
if it exceeds the product ,uF,,, where p is the coefficient of sliding 
friction. If F, > pF, the contact is flagged as ‘sliding’ and the calculated 
tangential force F, is reduced to 

F, = pF,,. (AW 

In this procedure some energy is extracted from the aggregate, thereby 
contributing to damp the system (‘friction damping’). 

Equations of motion 

The motion of each element i is governed by three first-order 
differential equations 

F,(i) = m(i) y 6413) 

and 

dv (i) 
Fj,(i) = m(i) Y 

dt 6414) 

r,(i) = I(i) ‘9 6415) 

where F,(i), FY(i) and r,(i) are the components of the net force and 
moment acting on the element, m(i) is the mass, I(i) is the moment of 
inertia, v,(i), v,,(i) and o,(i) are respectively the components of 
velocity of the element in the x direction, in the y direction, and the 
component of angular velocity of the element about the z axis. 

The forces and the moment in equations (A13), (A14) and (A15) 
represent the components of net force and moment exerted on 
element i by all other elements in contact and by a damping force Di. 
The damping force Di is needed in the DEM, otherwise the elements 
would vibrate for an infinite time after they start to move because the 
aggregate is a closed elastic system and any input of energy tends to 
remain in the system if there is no means of dissipating it. One way of 
damping the system that has already been mentioned is ‘friction 
damping’ (Cundall & Strack 1979). In addition to ‘friction damping’, in 
our DEM experiments we have used a viscous or an impact damping 
scheme. Viscous damping is accommodated by applying a viscous 
force at the contacts (Cundall 1971, Cundall & Strack 1979). Impact 
damping is accommodated by applying a force that is able to absorb all 
the energy due to the initial velocity of the grain (Saltzer 1992). 

The physical significance of using one damping method or another is 
questionable. During deformation of a real granular system, energy is 
dissipated by friction, grain crushing, plastic deformation, etc. Only 
the exact quantification of these mechanisms would allow one to devise 
a damping method that has a meaningful physical significance. As this 
has not been done, the damping has to be considered simply as an 
arbitrary means to dissipate energy in order to prevent endless move- 
ment of the grains. 

By integrating equations (A13), (A14) and (A15) twice, one obtains 
the equations 

x(i) = x0(i) + v,(i)Af (A16) 

y(i) = yO(i) + v,(i)At (AI7) 
a(i) = so(i) + o,(i)At (‘418) 
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that give the new coordinates x(i), y(i) of the element’s centroid, and code (Antonellini 1994) to investigate the problem of shear band 
the rotation of the particle, a(i), as a function of time, and of the growth and the development of its microstructure. To limit the time 
previous position and orientation of the element (x0(i), y&), a&)). required for the computations we have studied granular systems in 

The DEM is computationally intensive, especially when it models which the number of particles ranges from 105 (-40 min CPU time on 
many-particle systems and complex interaction laws among the ele- a SPARC 2 workstation) to 950 (-65 h CPU time). The structure and 
ments. For our numerical simulations we have developed a specific the listing of the program can be found in Antonellini (1994). 


